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ABSTRACT 

This thesis describes the electronics for the STC, a part of the "Silicon Track 

Trigger", new trigger processor which is being designed for the D0 experiment at the Fermi 

National Accelerator Laboratory in Batavia, Illinois, Fermilab The silicon track trigger 

project is done in collaboration between the Electrical and Computer Engineering 

Department at FAMU-FSU and the Physics Departments of Florida State University, Boston 

University, Columbia University, and the University at Stony Brook.  

 The D0 detector is a general-purpose detector for the study of antiproton-proton 

collisions at high energy. The construction and operation of the detector is done by the D0 

collaboration, which presently consists of about 450 physicists from about 50 universities 

and research laboratories.  The particle created in the proton antiproton collisions generates 

signals in a silicon micro-strip detector, which can be used to reconstruct the tracks of the 

particles. The new trigger processor will use these signals from the new Silicon Micro-strip 

Tracker (SMT) to tag collisions in which long-lived b-quarks are produced. The study of 

events containing b-quarks can help in addressing many fundamental questions in particle 

physics. The new trigger processor will add significantly to the physics capabilities of the 

D0 detector in these areas. The silicon track cluster card (STC) accepts the digitized data 

from the strips in the SMT, finds clusters of strips with charge on them, determines the 

centroid for these clusters, and checks which of those centroids are within roads 

corresponding to candidate tracks. 

Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) is 

used to describe the behaviour model of the design. The MAXPLUS –II synthesis tool by 

ALTERA Corporation was used to implement the design in FPLDs. The final design is 

implemented in three FPLDs of the FLEX10K family by ALTERA Corporation.
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              CHAPTER 1 

INTRODUCTION 

 
 

Integrated Circuit (IC) technology has dominated the electronic world since their 

introduction in 1960s. Dr. Jack S. Kilby was awarded a Nobel Prize this year (2000) for his 

part in the invention of IC. There were gradual advancements to the IC technology through 

Small Scale Integration (SSI), Medium Scale Integration (MSI), Large Scale Integration 

(LSI), Very Large Scale Integration (VLSI) technology that evolved in the 1970s and the 

most recent is Ultra Large Scale Integration (ULSI) technology. ULSI has made it possible 

to implement powerful and compact digital circuits at low cost, as now it is possible to build 

chips with millions of transistors [1]. New Computer Aided Design (CAD) tools are being 

used. Example, the Simulation Program for Integrated Circuit Emphasis (SPICE) is used at 

the circuit level, and there are Hardware Description Languages (HDLs) that are used to 

describe and specify electronic systems at different levels of abstraction ranging from 

behavioral to structural level.  

Application Specific Integrated Circuits (ASICs) [2] are specialized type of ICs that 

have evolved from the VLSI technology. ASIC has evolved from a simple array of a few 

hundred logic gates into a complete family of full custom and semi custom ICs using more 

than 1 million logic gates. The main reasons for the popularity of ASICs are reduced board 

space requirements, reduced development cost, increased reliability, maximized 

performance, and security for new designs.  

Full-custom ASICs are designed without using any precompiled or preprocessed silicon. 

The designer works at transistor level to optimize each cell for area and performance. They 
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generally require a complete set of standard steps for fabrication process. Whereas, semi-

custom ASICs are preprocessed chips to which the designer only needs to add the final 

metal interconnection. The different types of semi-custom ASICs are Standard cell and Gate 

arrays. 

 Standard cells are pre-designed circuit functions at the LSI /VLSI level of complexity 

that can be joined by interconnecting cells. These are cheaper, when manufacturing more 

than 10,000 chips, as the Non-Recurring Engineering (NRE) costs are high. The NRE cost 

includes the cost of work done by the ASIC vendor and the cost of the masks. Gate arrays 

are preprocessed wafers of logic elements. They require only one to three masking steps of 

metal interconnects to complete the fabrication process. They have columns of transistor 

arrays surrounded by inputs and outputs. The drawback of gate arrays is the lack of 

flexibility to add complex functions; this is due to the difficulties in creating the signal 

routing channels. 

 Programmable devices are a type of semi-custom ASICs, which can have anyone of the 

architecture discussed above. These are general-purpose chips that can be configured for a 

wide variety of applications. The first of these kinds were the Programmable Read Only 

Memories (PROMs)[3], which were one-time programmable devices. The more recent 

versions are Programmable Logic Devices (PLDs), which have high speed and high 

performance logic gates. A step ahead in complexity to PLDs is the Field Programmable 

Gate Array (FPGA) [1]. There is very little difference between an FPGA and a PLD; an 

FPGA is usually larger and more complex than a PLD. A FPGA typically consists of a two-

dimensional array of logic blocks that can be connected by general interconnection 

resources. There are a lot of FPGA companies in the market. The major competitors are 

ALTERA and Xilinx. Table 1.1 shows the comparison between the architecture, the 

technology and the main products of these companies. 
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Table 1.1 Comparison of the ALTERA and XILINX architecture and products. [4] 

 ALTERA Xilinx 

Architecture Deterministic Complex 
PLDs 

Non-deterministic coarse 
grain FPGAs 

Programming 
elements 

EEPROM Static RAM 

High density family APEX 20KE series Virtex series 
Low cost family ACEX series SPARTAN – II series 
Memory elements Embedded Array Blocks 

(EABs) 
Block SelectRAM 

Logic blocks Logic array blocks (product 
– term – based programming 
logic devices) 

Configurable logic blocks 
(Look- up Table 
approach) 

Maximum number of 
gates available 

1,520,640 1,000,000 

Maximum RAM bits 442,368 131,072 
System gates 2,392,000 1,124,022 
Logic cells 51,840 27,648 
Maximum I/O bits 808 512 
Voltage Levels 1.8V, 2.5V, 3.3V 2.5V, 3.3V 
Dual–port memory Two ports are used, one for 

reading and one for writing, 
so need two-memory blocks 
(minimum). 

Same port is used to read 
and write. 

Special features 1.Content Addressable 
Memory (CAM). 

2. Mega-functions to model 
memory. 

 

1.On chip Digital Delay-
Locked Loops (DLLs). 
2.Block RAM can be 
supplemented for 
external memory. 

 

As we can see from the Table 1.1 the number of logic devices handled is very large. 

This growing demand of ASICs and FPGAs in the electronic industry has lead to the 

popularity of Hardware Description Languages (HDLs). Very High Speed Integrated Circuit 

(VHSIC) Hardware Description Language (VHDL)[5] has been the result of this high 

demand.  

          VHDL evolved in the US Department of Defense (DoD) in 1983. It was intended for 
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documenting and modeling digital systems ranging from small chip to large systems. DoD 

made it public in 1985, and IEEE immediately adopted it. It was a standard in 1987, under 

1076-1987. It was further upgraded in 1993, with the IEEE 1076-1993 standard [6]. There 

are a lot many synthesis tools to help the designer check his design. The designer creates a 

behavioral or structural model of his design, which can be synthesized by a synthesis tool. 

Thus the design verification and testing process is made a lot easier and faster. The 

important aspect of VHDL is that the behavior of the circuit described is independent of the 

logic gates available. This makes the VHDL code independent of the technology [7]. Thus 

code written for one technology can be easily implemented into some other technology. For 

example the synthesis tool SYNOPSIS supports both Altera and Xilinx technology. 

Some of the important applications of Field Programmable Logic Devices (FPLDs) 

are image enhancement filters, signal processing for digital modulation and demodulation, 

direct digital signal synthesis, fuzzy logic embedded controllers and reconfigurable 

computing [8]. Reconfigurable computing technology is one of the upcoming applications. It 

is the ability to modify a computer system’s hardware architecture in real time. Instead of 

having ASIC, reconfigurable computing is an effort to build ICs that can be used for a set of 

applications after some minor reconfigurations [9]. Thus, parts of the algorithms are 

hardwired into the device and they are implemented on a function-by-function basis. Since 

these are implementations aimed at few applications, they offer tremendous acceleration 

over traditional programming solutions.  

  With such a wide variety of applications, FPLDs are easily available in market 

and this approach is found to be very economical too. The work presented in this thesis is 

one such application of FPLDs. The electronics design for D-zero (D0) detector at the Fermi 

National Acceleration Laboratory is to be used to trace the path of the particles emitted from 

the collision of a proton and anti-proton. This experiment has a large amount of data to be 
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processed and the available processing time is just few microseconds. It was been proven 

that hardware based algorithms outperform software implementations, even though the 

processors executing the software are much faster than the hardware [10]. Thus hardware 

implementation is chosen for this project. The hardware design is developed using VHDL as 

the description language and implemented in ALTERA’s FLEX 10KE FPLDs. The 

synthesis tool used is ALTERA’s MAXPLUS II. This approach gives us the flexibility of 

software and the speed of hardware. 

  In this thesis, Chapter 2 has a brief description about Fermi National 

Acceleration Laboratory, their activities and details about the DØ project. There is also a 

summary of the implementation of the main data path. Chapter 3 describes the design and 

implementation of the main data path in detail. The Chapter 4 includes the simulation results 

of the VHDL model and the comparison of the results with a MATLAB model of the design. 

Chapter 5 describes the different design approaches studied for some of the modules of the 

main data path. The concluding remarks about the work are in Chapter 6.  
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CHAPTER 2 

THE DØ DETECTOR AT FERMI NATIONAL ACCELERATOR LABORATORY 

 

 

Elementary Particle Physics, also called high-energy physics, is a branch of physics that tries 

to elucidate the structure and properties of matter at the smallest scale. The final aim is to 

describe matter in terms of a small number of different fundamental constituents, and to 

understand their interactions in terms of a small number of different forces. In order to probe 

the properties of matter, it is necessary to use projectile particles of high energy, and 

therefore experimental studies are done using high-energy accelerators [11]. Ordinary matter 

is made of atoms, which in turn contains electrons that orbit the nucleus, which is 

constituted of protons and neutrons. Particle physics aims to study the properties of these 

particles. The rapid progress in the understanding of particle physics during the last thirty 

years has brought about the emergence of a model according to which matter is made up of 

two kinds of basic constituents called "quarks'' and "leptons''. In this model, protons and 

neutrons are not "fundamental", since they contain quarks. Electrons, which belong to the 

family of leptons, however, are considered fundamental. The four fundamental forces viz. 

strong, electromagnetic, weak and gravitational interactions, by which these constituents 

interact with each other, have all been recognized to share several important characteristics. 

Two of these forces, electromagnetic and weak, are now known to be manifestations of a 

single force called electroweak, and also the strong interaction that holds nuclei together 

appears to be very similar to the electroweak interaction. This progress in understanding was 

achieved by an intensive mutual inspiration of theory and experiment, and was only possible 
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due to a huge, unprecedented experimental effort in terms of new accelerators and very 

large, "universal, all-purpose detectors'', designed, built and operated by collaborations 

comprising several hundred physicists from institutions world-wide. 

The theoretical model, which has emerged from these studies, is generally referred to 

as the "Standard Model'' (SM) of particle physics.  This theoretical description has been 

remarkably successful: Even though many sophisticated, high precision experiments have 

been performed to test it with the hope to find deviations from it, it has withstood all 

attempts to invalidate it. On the other hand, because of theoretical shortcomings in the 

model, we know that the SM is incomplete. It can only be a very good approximation of a 

more general theory, an "extension'' of the Standard Model. Thus, theorists in particle 

physics look for extensions of the SM, which unify all forces in nature and improve the SM.  

The main experimental focus in present-day research in particle physics is to study particle 

collisions at the highest possible energies, to discover deviations or new phenomena not 

predicted by the SM. 

Fermi National Accelerator Laboratory (Fermilab) was founded in 1967 [11] and has 

been in the forefront in the exploration of fundamental nature of matter. It was here that the 

first of the heavy quarks, the "bottom" or "beauty" quark, was discovered in 1977. Since 

1989, its accelerator has allowed operation as a "proton - antiproton collider", in which 

protons and antiprotons are accelerated to high energies and made to undergo head-on 

collisions.  

These collisions result in the production of many newly created particles, many of 

which decay very quickly.  To detect these emitted particles, Fermilab has two detectors at 

the TeVatron collider – the DØ detector and the CDF detector. These experiments have 

helped to improve our understanding of the structure of the proton, and the way its 

constituents, the quarks, interact with each other. These experiments also discovered the top 
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quark in 1995 [12,13]. Presently, both the accelerator and the experiments are undergoing an 

upgrade that will extend the reach of studies. The SM predicts the existence of 

experimentally undiscovered particle, the "Higgs Boson", which, according to the present 

understanding is responsible for giving matter particles mass. The main aims of the future 

experiments at Fermilab are (i) to study the properties of the top quark in great detail and 

with high precision, (ii) to find evidence for the Higgs Boson and measure its properties 

example its mass, and (iii) to uncover evidence for "new physics" i.e. deviations from the 

SM. The phenomena of interest in these experiments are very rare; i.e. they occur in only a 

very small fraction of all the collisions. 

The DØ detector  

The DØ detector is one of the two "general purpose detectors" installed at the 

Fermilab TeVatron collider. As most of these detectors, it consists of a central tracking 

detector surrounding the collision point, a calorimeter, and a muon detector.  

The tracking detector has two components: a silicon micro-strip detector and a scintillating 

fiber tracker. 

The Silicon Micro-strip Tracker (SMT) consists of silicon wafers i.e. p-n junctions, 

which are reverse biased so as to form a diode with a depletion region over the full thickness 

of the wafer.  The passage of charged particles through the depletion region causes the 

generation of electron-hole pairs.  Thin aluminum electrodes called "strips" on these wafers 

collect the liberated charge and bring them to the SVX-II chip, which contains a 32-deep 

capacitor array to store the signal from 32 successive beam crossings, followed by an 

Analog-to-Digital Converter (ADC).  Digitized data are transported via an optical fiber link 

to the counting house where trigger and read-out or data acquisition system is located. 

The aluminum strips for read out are oriented in three different positions axial, stereo 

and z-axis. The axial position means parallel to the axis of cylinder of the detector, the 



 

 9 

stereo position means inclined by about two degrees with respect to the axial direction and 

the z-axis position means the chips are perpendicular to the axial direction. 

The Central Fiber Tracker (CFT) consists of eight concentric cylinders surrounding 

the beam pipe; each of the 8 cylinders has several layers of scintillating fibers. Passage of 

charged particles through those fibers causes scintillation light to be generated, which is 

detected by Visible Light Photon Counters (VLPCs). The signal is split so that part of it is 

available at trigger Level_1 (described later). 

The other parts of the DØ detector are: the calorimeter, which measures the energy 

of both neutral and charged particles, and the muon detector, which detects all those charged 

particle which are not absorbed in the calorimeter.  

 
 
The DØ trigger and data acquisition system 

Since the phenomena that evoke the most interest are expected to be rare, high beam 

intensities are needed to improve the chance of detecting them. At the high beam intensities 

in the new upgraded Fermilab collider, the rate of interaction between the protons and 

antiprotons that collide is very high; at the anticipated intensities, we expect about 7 million 

collisions per second. Although, most of these interactions are of no interest to the physics 

program of the experiment, some rare events are most likely to provide new and interesting 

information. For example, only one in 10 billion interactions will produce a top quark. Since 

the experiment can only record about 20 events per second, one would miss the interesting 

events if the experiment did not have a way to decide very fast which ones to record. This 

decision is done by a system of fast electronics called the "trigger". The trigger is arranged 

in three successive stages called Level_1, Level_2, and Level_3 [15]. The amount and 

quality of information, as well as the time available to make a decision increases from level 

to level. 
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Figure 2.1 The flow of data in the DØ trigger and data acquisition system 

Level_1 

 

This level obtains preliminary information from fast "trigger pick-offs", separately 

from the calorimeter, fiber tracker, muon detector and the pre-shower detectors [15]. It then 

makes a fast decision on whether there are candidates for potentially interesting objects, for 
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example, an electron-like energy cluster in the calorimeter with energy above a given 

threshold, a track candidate in the central fiber tracker with momentum above a given 

threshold or a muon track candidate in the muon detector. Up to 128 such conditions or and-

or combinations thereof can be examined. If any of these 128 conditions (Level_1 bits) is 

satisfied, Level_1 issues a Level_1-accept and sends the event to Level_2 for the next stage 

of decision-making. The input rate to Level_1 is about 7 million events per second, and the 

output rate is 10000 events per second.   

One part of the Level_1 trigger which is of interest for this work is the Central Track 

Trigger (CTT). This compares the pattern of hits in the fibers of the central fiber tracker 

with preloaded patterns in a Look Up Table (LUT), which correspond to charged particle 

tracks with momentum in a given range. This decision is done using Xilinx Virtex FPGAs.   

 

Level_2 

The Level_2 trigger receives an input rate of 10000 events per second, i.e. it has, on 

the average, 100 µs to make a decision. It has access to more and more refined information 

than Level_1. In particular, the information from the SMT is available at Level_2.  On issue 

of a Level_1 accept, the data from the silicon detector chips are digitized and passed on to 

Level_2. The digitization takes place in a full custom, mixed signal integrated circuit (SVX-

II). These are hardwired directly to the detector. The charge, which is stored in terms of 

voltage across a capacitor, is digitized by the SVX-II to an 8 – bit word. Ten SVX-II chips 

are connected to High Density Interconnect (HDI) that is copper flexible printed circuit. 

Four HDIs are further connected to each of the two Port Cards of the "Sequencer", up to 16 

of which are mounted on a VERSAmodule Eurocard (VME) crate.  

The Level_2 trigger [16]  is organized in two sub-stages: Level_2 preprocessors, one 
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for each detector, and a global Level_2 processor.  The task of the preprocessors is to 

determine quantities which can then be used as the basis for a decision on whether to accept 

an event or not.  The global Level_2 processor combines information from all the 

preprocessors and makes a decision based on this combined information.  The Level_2 

processor consists of Alpha processors, while the preprocessors contain a variety of boards 

with FPGAs, Digital Signal Processing (DSP) microprocessors and Alpha processors. When 

Level_2 issues an accept signal, the data is transferred to VME Receiver Card (VRC) on 

fiber using low-level fiber channel hardware [15], for transfer to Level_3. 

One of the Level_2 preprocessors is the L2STT, the silicon track trigger  processor, a 

part of which is the subject of this thesis.  

 

Level_3 

 This is the final decision and data acquisition level in the D0 electronics. On every 

Level_2 accept, the Level_3  receives data from each module of the both Level_1 and 

Level_2, as well as directly from the various detector parts. The data corresponding to an 

event that has been accepted by Level_2 are sent to one of the fifty Pentium processors that 

make up the Level_3 system. A decision algorithm implemented in software on these 

processors examines the full set of information that is available and makes a decision on 

whether to accept or reject the event.  The input rate to Level_3 is 1000 events per second, 

and the output or accept rate is about 20 events per second. The accepted events are then 

written to disk and transferred over a fast link to the Feynman Computing  Center where 

they are recorded on permanent mass storage devices. 
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The Silicon Track Trigger (STT) 

The STT design in the DØ detector electronics is motivated by the fact that many 

interesting phenomena are characterized by the presence of b-quarks. For example, top 

quarks decay into b-quarks. In addition the Higgs Boson, the most sought-after particle, is 

expected to decay into b-pairs with very high probability. The b-quarks decay after a 

lifetime which is long enough for them to travel a distance of about a millimeter before 

decaying. Thus, tracks of particles from the decay of these b-quarks appear to originate from 

a different point called a secondary or displaced vertex rather than from the primary 

interaction point called the primary vertex, which is the point where the proton and 

antiproton collided. Therefore, the presence of tracks, which come from a displaced vertex is 

a signal of a rare event, and is recorded.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 The layout of the DØ  Silicon strip detector 
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L1CTT SMT

L2CTT

preprocess SMT data
find clusters

associate clusters 
with L1CTT tracks

fit trajectories

L3

The task of the STT is to find and reconstruct charged particle tracks in the SMT and 

calculate their properties such as charge, momentum, and impact parameter (i.e. distance of 

closest approach to the primary interaction point). 

The STT is organized into three stages: the Fiber Road Card (FRC), the Silicon 

Track Clustering Card (STC), and the Track Fit Card (TFC). The FRC receives the 

information about track candidates from the Level_1 CTT, and sends this information on to 

the STC and the TFC.  The STC receives the SMT data, preprocesses these data, finds 

clusters and calculates their centroids, associates clusters with track candidates that it 

received from the FRC, and sends all of this information on to the TFC, as well as to 

Level_3. Finally, sophisticated DSP microprocessors in the TFC are used to run curve-

fitting algorithms to determine the track parameters such as momentum charge, and impact 

parameter, which are then sent to the global Level_2 processor for decision-making.  

 

 

 

 

 

 

 

 

Figure 2.3 Block diagram of the STT 

The silicon track cluster card (STC)  [16] 

  Every  STC card has eight identical channels of STC electronics, corresponding to 

different parts of the SMT detector.  Thus, STC refers to one of these channels (of which 
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there is a total of 54 in the whole of STT). The development of the VHDL code for the STC 

is the subject of this thesis. The STC performs the functions of preprocessing the SMT data, 

finding clusters, to associate the centroids with the FRC tracks and fitting the trajectories to 

find the particle tracks. It acquires the SMT data and gives the final output to the track-

fitting algorithm, which is the final step in the STC electronics. The main data path has three 

modules: Strip Reader, Centroid Finder, and the Hit Filter. The STC level also has  storage 

module  buffers for L3. 

 

Strip Reader 

  This is the front end of the STC data path. It has two sub-modules, SMT Data Filter 

and the Strip Reader Control. It accepts the 8-bit SMT data from the VME bus at the rate of 

53MHz. This data is filtered of excess “C0”, end of event markers. The filtered data is 

corrected after checking for bad strips and a second check for the gain and offset values for 

the individual strips. At the output the Strip Reader formats the data obtained in a 23-bit 

word to be read by the Centroid Finder. The data is written into a 23-bit wide First In First 

Out (FIFO) bank of registers at the rate of 32MHz. The format of the 23-bit register is given 

in Table 2.1 below. 

 

 

 

Table 2.1 The 23-bit data at the output of the Strip Reader. 

22..21 20 19 18..11 10..7 6..0 

Data-type New data 
Bit 

End of event 
bit Data SVX-II 

Chip ID 
Strip 

number 
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Centroid Finder 

 This module also runs at 32 MHz. It has two tasks (i) to determine a cluster and (ii) to 

find the centroid for the cluster. The two sub-modules in this module are Cluster Finder and 

the Centroid Calculator. The module has the ability to find three– or five–strip clusters, 

selected by a downloadable parameter. The Centroid Calculator algorithm finds the centroid, 

i.e. the pulse-height weighted average of the strip-addresses. These centroids (11 bits, 

containing SVX-II chip id (4) and strip number (7)), give the position at which a particle is 

supposed to have passed. The data type of the centroid specifies which strip direction (axial, 

stereo or z-axis) is represented by the data. Hence this is tagged along with centroid, when it 

is passed on to the Hit Filter. The centroids tagged with the end of event bit, data type, and 

the pulse area are stored in the FIFO at the end of the module in the format given in Table 

2.2. 

 

Table 2.2 The 17-bit data word from Centroid Finder to the Hit Filter. 

17 16..15 14..13 12..0 
End of 

event bit 
Data type 

 
Pulse area Centroid 

 



 

 17 

Hit Filter 

 The Hit Filter has 46 parallel Comparators that can hold a maximum of 46 pairs of the 

road groups from Level_1. The two road values represent the upper limit and the lower limit 

of the road groups. The centroid values are pulled out of the FIFO. Only the centroids with 

axial data-type are compared with the roads. The z-axis centroids are stored in this module 

to be read out by the hit interface module. The hits are the centroids that match the road 

groups. These are also stored in a FIFO. The hit interface module reads them out. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 The data flow in the STC main data path with reference to the modules in the 

electronics. 

L3 buffer 

 The L3 buffer is a group of five buffers that store the data processed at each step in the 

STC. This data can be accessed for further analysis after the results from the Level_3 are 

obtained.  
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The five buffers are – 

1. Raw data: This buffer holds the filtered data coming out of the SMT Data Filter. 

2. Corrected data: The corrected data is the raw data checked for bad strips and also 

the data from the strips is processed for gain correction and offset correction. 

3. Strip clusters: This buffer holds the data values and addresses of the strips that 

form the cluster, the threshold values used and the cluster type. 

4. Centroids: The centroids calculated in the Centroid Calculator, with their data 

type are stored in this buffer. 

5. Hits: This buffer holds the hits out of the Hit Filter. 

 

Main control module 

 
 The main control module is the control unit that monitors the flow of data to and 

from the eight STC channels. This module is the gateway between the eight channels and 

the other electronics of the Level_2. The reading of hits and z- axis centroids from the Hit 

Filter, downloading the parameters in the channel memory and reading out the L3 buffers 

are some of the functions of this module. The hit interface module of each channel talks to 

this main control module. 

 With this background of the DØ detector and the role of the main data path within the STT, 

the further chapters discuss the design methodologies and the implementation of the main 

data path.  
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CHAPTER 3 

A DETAILED DESCRIPTION OF THE STC MAIN DATA PATH 

 

 The main data path consists of three modules: the Strip Reader, Centroid Finder and the 

Hit Filter. The data flow through each of the module and the data processing in the module 

is described in detail in this chapter.  

 

Design features 

 
The design is implemented in a FPLD and VHDL is used to describe the design 

behaviour. The design defines the logic for one channel of the STC. Each STC has eight 

such identical channels operating in parallel. Each channel can be enabled or disabled 

according to incoming data from the experiment. The whole design (except for the SMT 

data filter) is designed to operate with system clock of frequency 32 MHz. The logic has a 

synchronous reset signal at startup that is used to initialize the design. All the modules are in 

their initial states and do not start the data processing till an EVENT_START signal is 

issued. The SMT Data Filter in the Strip Reader runs synchronously when the channel is 

enabled, and the Centroid Calculator in the Centroid Finder and the Comparator module in 

the Hit Filter run asynchronously when the channel is enabled. 

All the control modules are designed with the Moore type Finite State Machine 

(FSM) approach. A FSM is a state machine with finite number of states. The machine 

always resets into an initial state and updates states on each clock cycle. FIFO buffers are 

provided at the end of each module in the data path to maintain a synchronous data flow. 

The logic can process data for only one event, but the design can hold more than one event 

at the input in the SMT data, and output in the Hit Filter. 
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Design parameters 

 
The parameters required for the data processing are unique for each channel. These 

parameters are downloaded in the channel memory on start up. The memory spaces are 

allocated to facilitate the main control logic to write into the memory and read out of the 

memory through a bi-directional bus. The control logic uses 15 address lines to access this 

memory space. The memory allocated area are as given in the Table 3.1. 

 
Table 3.1 Memory mapping for the single channel. 

 
Memory area Memory space Memory address 
Monitor space 1K X 32 0000 – 03FF 
Miscellaneous 1K X 32 0400 – 07FF 

Gain Offset LUT 4K X 8 0800 – 17FF 
Test data LUT 256 X 18 

(1K min.) 
1800 – 1BFF 

Empty Space (for future use) – 1C00 – 3FFF 
Road data LUT 16 K X 22 4000 – 7FFF 

 

Monitor space 

This space holds the monitoring counters from the Strip Reader and the Centroid 

Finder. These counters are defined as[17] –  

1. SMT counters  

i. Mismatch Counter: This counter counts the number of times there was a 

mismatch in SEQ ID and HDI ID. 

ii. SMT error (SERR) Counter: This counter keeps track of the error in 

reading the data VTM data. 

iii. Zero Error Counter: This counter increments every time a byte of zeros 

is not present in the data stream after the SVX-II chip-id. 
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2. Chip activity counters: There are nine SVX-II chip activity counters, one for 

each SVX-II chip. The counter for the SVX-II chip is incremented when a 

strip from that SVX-II chip has data on it. Thus it is an indication of the 

activity on that SVX-II chip for an event. 

3. Cluster counters: There are three cluster counters, one for each data type. 

These counters count the number of clusters of each data type in an event. 

 

Miscellaneous memory  

 The miscellaneous memory constitutes of bad channel memory, chip ranges, pulse 

area thresholds, clustering thresholds and the miscellaneous data register. 

1. Bad channel memory space having 64, 32 bit wide words is actually a LUT. 

Addresses assigned to this memory space are from 0400 – 047F (HEX). This 

memory has the status of each of the 128 channels of every SVX-II chip in the 

detector. A channel is set to be bad on the basis of the technical survey of the 

detector, conducted in between runs. This status is used to eliminate any false 

readings on the channels. 

2. Chip range memory space is at address 0480 (HEX). This memory consists of 

24-bit word. Each data type has a 4-bit upper range value and a 4-bit lower value 

for the SVX-II chips, thus forming the 24-bit wide word. 

3. Pulse area threshold memory space is at the address locations 0500-0503 (HEX). 

This memory is 24-bit wide and holds the three threshold values 

Pulse_Threshold_1, Pulse_Threshold_2, and Pulse_Threshold_3 required to 

calculate the pulse area for the clusters found in the event. These values are 

unique for each data type. 
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4. Clustering thresholds are downloaded in memory locations 0600-0603 (HEX). 

These are the Threshold_1 and the Threshold_ 2 values used in the clustering 

algorithm. The data value Threshold_1 is minimum data value that should be on 

a strip to be considered as valid data. The data value threshold_2 is the minimum 

peak data value of a cluster to get a valid cluster from the strips. 

5. Miscellaneous data register is a 32-bit register downloaded at address location 

0580(HEX). This register has the following parameters - 

i. Unique 8–bit SEQ ID for the channel. 

ii. Unique 3–bit HDI ID for the channel. 

iii.  Delay: This is an 8-bit signal to indicate the delay between the 

FRC_START signal and the main EVENT_START signal. 

iv. Disable bit: This bit indicates whether the channel is disabled. 

v. SMT ID: This is 3-bit number, unique for each SMT data stream.  

 

 
 
 
 

Table 3.2 Miscellaneous register downloaded at 0580 (HEX). 
 

 

 

 

Gain offset memory 

This memory holds the corrected data for each SVX-II chip in the detector, 

according to the gain and offset values for the SVX-II chips. This data is accessed 

with the SVX-II chip number and the data value for the strip. 

31..28 27 26..24 23..16 15..8 7..0 
Empty Disable 

Bit 
SMT 
ID 

Delay 
Count 

SEQ 
ID 

HDI 
ID 
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Corrected data is calculated using following equation –  

Corrected data = gain * actual data value + offset.  

Test data LUT 

The test data memory space holds the test data in the same format as the 18-bit data 

stream (refer Table 3.3). This data stream is used to check the functionality of the 

design. 

Road data LUT 

The road data memory is an external memory space, which gives a unique pair of the 

roads (upper and lower) 11-bits wide defining a group of roads. The upper and lower 

road values are unique for each 17-bit road data value obtained from the Level_1 i.e. 

FRC, which represents a fiber road track. 

 

Strip Reader 

 

 

 

 

 

 

 

 

 

Figure 3.1 Block diagram of the Strip Reader module. 
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The three sub modules in the Strip Reader are the SMT Data Filter, SMT Test Select 

and the Strip Reader Control. The Strip Reader module has two clocks; a SMT clock 

running at 53 MHz, to match the speed of the SMT data coming on the VME bus and the 

PCI System clock running at 32 MHz, this clock determines the flow of data through the 

design.  

SMT Data Filter module 

 
The SMT module gets input from the VME bus. The module has a state machine that 

filters out the excess data at the end of event. It also converts the 8-bit VTM data stream into 

16-bit data word so that the system clock even though slower than the SMT data clock can 

match the speed of the input data stream. The SMT Data Filter runs continuously when the 

channel is enabled. Any error in reading the input data stream is indicated by setting one of 

two error bits, one each for the higher and the lower byte of the output stream. These errors 

bits are also passed on to the next sub module along with the 16 bit data, thus forming an 18-

bit word that is stored in the FIFO, as given in Table 3.3. 

 
Table 3.3 Data stream from SMT Data Filter to the Strip Reader Control. 

 

 
  

  Another task of this module is to determine the event number of the current data 

stream. This number is assigned after the FRC_START signal is received. This signal is 

used to synchronize the SMT data event and the road data event (from Level_1). The event 

number is tagged along with the end of event marker and written as the last word in the 

FIFO. 

17..16 15..8 7..0 
Error bits Higher byte Lower byte 
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SMT Test Select module 

 This module uses the TEST input from the main control module to select between the test 

data stream downloaded in Test FIFO and the SMT data stream in the SMT FIFO. The hand 

shaking signals from the Strip Reader Control module to both the FIFOs are routed through 

this module. 

Strip Reader Control module 

The Strip Reader using a Moore type FSM (Reference flow chart in Appendix A.3); 

reads the 18-bit data stream from the intermediate FIFO (refer Table 3.3). Each channel is 

configured to read the data stream from a unique SEQ and HDI. Thus the first word read out 

of the FIFO is checked for the correct SEQ ID and the HDI ID; if there is a mismatch, the 

mismatch counter is incremented and mismatch bit (MM) is set. The SVX-II chip-id is 

identified next with a byte of zeros following it. These are important to isolate the strips with 

data values from the SVX-II chips. If the byte of zero is absent the zero error counter is 

incremented. The data type is determined by comparing the SVX-II chip-id with available 

SVX-II chip ranges for the three data types. Chip activity counters are present in this module 

to keep track of the number of strips per SVX-II chip. Once this is done, the design starts 

processing the strip numbers and the data values. The gain-offset memory is then accessed 

using address as the SVX-II chip id concatenated with the data value to get the corrected 

data. Before formatting the 23-bit data word (refer Table 2.1) the strip number is compared 

with the bad channel memory and the strips that are set to be bad are assigned a zero data 

value. The corrected data and the zeroed bad channel strip with the data type, SVX-II chip-

id and channel number are formatted into the 23-bit wide data word and written in the output 
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FIFO (refer Table 2.1).  An event covers many SVX-II chips but the same SEQ ID and the 

HDI ID. When an end of event marker is encountered, the state machine extracts the event 

number, which is the lower byte of the 18-bit word. The two error bits (refer Table 3.3) 

serve as an input to the SERR counter and are passed on as a single SERR bit. 

Centroid Finder  

 
 The Centroid Finder module works at the frequency of system clock. This module has 

two sub-modules the Cluster Finder and the Centroid Calculator. This is the heart of the data 

processing in the main data path. This module finds the clusters from the strips and 

calculates the centroids. The detailed block diagram of this module is shown in Figure 3.2. 

 

 

 

 

 

 

 

 

 

Figure 3.2-Detailed block of the Centroid Finder module. 

 

Cluster Finder module 

 
The Cluster Finder module has three tasks (i) interface with the output FIFO of the 

Strip Reader module, (ii) find the data clusters and (iii) pass on the strips of cluster to the 
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Centroid Calculator module. It reads out the 23-bit word and splits it into its constituents 

(refer Table 2.1). The strips in a cluster should have a data value greater than or equal to 

Threshold_1, same data type and sequential addresses. The SVX-II chip id is concatenated 

with the strip number to form an 11-bit strip address. The clusters are of five strips. There 

are five data and address buffers to store the data values and addresses of strips constituting 

a cluster. There are also two secondary data buffers and address buffers to store the shadow 

values in anticipation of a peak value greater than the one already found for a cluster. The 

first data value read is always stored in data buffer D3, which contains the peak value. The 

following data values after conferring to the above conditions are compared with data value 

in D3. If the new data value is greater than or equal to D3 then the peak is replaced or the 

following data buffers are filled, (reference flow chart Appendix A.4). The final peak cluster 

value should be greater than or equal to Threshold_2.  

 

 
 
 
 
 
 
 

 
            1   2    3   4   5    6    7    8    9  10  11  12   

 
 
 
 

Figure 3.3 An illustration example of a five-strip cluster. 
 

The example in Figure 3.3 is an illustration of a five-strip cluster. All the registers 

are initialized to zero before reading data for a new cluster. 

(i) Strip 2 loaded into D1, address in add 1 = (peak address – 2) 

(ii) Strip 3 loaded into D2, address in add 2  = (peak address – 1) 
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(iii) Strip 4 loaded into D3, peak data value and address in add3 = (peak address)  

(iv) Strip 5 loaded into D4, address in add 4 = (peak address + 1) 

(v) Strip 6 loaded into D5, address in add 5 = (peak address + 2) 

 

The strip number 7 and 8 are stored in the shadow buffers B1 and B2. When the data 

value of strip number 9 is compared with D3 and found to be greater than data value of D3 

the data buffers D1 and D2 are over written with the shadow buffers B1 and B2. The 

corresponding address buffers are also replaced. The data value of strip number 9 is written 

in to data buffer D3 and the strip address is written into add3 (i.e. the peak address). 

So the new data buffers are –  

(i) Strip 7 loaded into D1, address in add 1 = (peak address – 2) 

(ii) Strip 8 loaded into D2, address in add 2  = (peak address – 1) 

(iii) Strip 9 loaded into D3, peak data value and address in add3 = (peak address)  

(iv) Strip 10 loaded into D4, address in add 4 = (peak address + 1) 

(v) Strip 11 loaded into D5, address in add5 = (peak address + 2) 

 

The end of cluster is found at Strip 11, as data value of the Strip 12 is below 

Threshold_1. The number of strips used for the cluster is 5 and the number of strips checked 

is 11. The data values (8-bits each) and the address add2 (11-bits) are passed on to the 

Centroid Calculator.  
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Centroid Calculator module 
 

 This module takes the data values of the strips in a cluster from the Cluster Finder and 

performs the arithmetic calculation of finding the centroid using the centroid mass principle. 

The calculation for the three or five strip cluster is decided according to the cluster type bit. 

In Figure 3.4 below, if D2 is viewed as the origin and D1, D3, D4 and D5 as point 

masses, the centroid of the system for a five-strip cluster is [18]–  

 

 

 

 

Figure 3.4 Realization of centroid calculation for a five-strip cluster [18]. 

 

 

 

 

 

 

 

 

 

 

The centroid value obtained from these calculations is added to the Address add2 

passed on from the Cluster Finder to get the exact address of the centroid for the cluster. The 

D5 D4  D3 D2 D1
3D52D4  D3D1-

.
)( 5

1i
i

3

1i
3i

++++
+++==−

∑

∑

=

−=
+

D

Di
stripfivecentroid

A D A D A D A DA D

A x A 0 A x A x A x

 D4  D3 D2 
 D4D2-

.
)( 3

1i
i

1

1i
2i

++
+==−

∑

∑

=

−=
+

D

Di
stripthreecentroid



 

 30 

final centroid value is 13-bit wide, because of the addition of two precision bits from the 

calculation. 

 This module also finds the quantized pulse area of the cluster. The pulse area is 

calculated by summing the data values for all the strips constituting the cluster and 

comparing the sum to three threshold values stored in the channel memory [19]. Two bits 

are set to indicate the cluster pulse area according to the thresholds given in Table 3.4. 

 

Table 3.4 The scheme for determining the pulse area of the cluster [19]. 

Pulse Area Sum 
00 <  Pulse_Threshold_1 
01 ≥Pulse_Threshold_1, Pulse_Threshold_2 ≤ 
10 ≥ Pulse_Threshold_2, Pulse_Threshold_3 ≤ 
11 ≥ Pulse_Threshold_3 

 

The centroid value its data type and pulse area are written into the output FIFO of the 

Centroid Finder (refer Table 2.2). 

 

Hit Filter 

 
 The Hit Filter module handles the axial and the z-axis centroids. It stores the z-axis 

centroid in the z-centroid FIFO and compares the axial centroids with road data values to 

find the hits (refer Chapter 2 – Section “Hit Filter”). 

 The Hit Filter module has six sub modules. They are Hit Filter Control module, 

Comparator module, Hit Register module, Hit Format module, Hit Readout module, and Z-

centroid module. The module handles only the axial and z-axis type of centroids.  The z-axis 

centroids are stored in a buffer, which can be accessed by the hit interface module and the 

axial type of centroids are compared with the roads from Level_1 to find hits. The hits are 



 

written in the output FIFO from where they can be pulled out by the hit interface module to 

be passed on to the STC Main control module.  
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Figure 3.5 Detailed block diagram of the Hit Filter module. 

 

Hit Filter Control module 

 
 This module controls the processing in the Hit Filter. It is activated with an 
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that are not loaded. The module then reads one centroid at a time. The axial centroids are 

loaded into the comparators, while the z-axis centroids are passed on to the Z-centroid 

module. The output of the comparators is masked, and the valid hit register is passed on to 

the Hit Format module to find the hits and format them. The control module issues all the 
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control signals for the processes comparing, masking and formatting. The control signals are 

LOAD_ROAD, READ_COMPARATOR and HITREG_VALID. 

 

Z- centroids module 

 
 This module formats the z-centroids in a 32-bit format and stores them in a FIFO. 

The hit interface module reads out the centroids from the FIFO. The 32-bit word formed is 

given in Table 3.5. 

Table 3.5 The 32-bit word format of the Z-centroids. 

31 30..28 27..26 25..24 23..16 15..13 12..0 
0 SMT 

ID 
Data 
type 

Pulse 
area 

SEQ 
ID 

HDI 
ID 

Centroid 

 

 Comparator module 

 The Comparator module has 46 parallel comparators. It has a capability to compare 

46 pairs of roads with each incoming axial centroid. The road pair of upper and lower roads 

of 11-bit each is compared with 11-bit centroid value (the two precision bits are not used in 

the comparison, as the roads are defined as whole values). 

 Hit Register module 

 This module ANDs the output of the Comparators with the mask register to get a 

valid Hit Register for the each centroid when it receives a READ_COMPARATOR signal 

from the hit control module. This helps to filter out the false outputs from Comparators that 

are not loaded with roads. 
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Hit Format module 

 This module takes the valid 46-bit Hit Register when the hit control module issues 

the HITREG_VALID signal. The module checks for the hits serially. To make the scanning 

process faster, the register is split into five groups. The OR-ed output of each group 

indicates whether there is a hit in that group. The scanning of the register starts from the first 

group that has a hit, and then the logic goes through the rest of the register sequentially. The 

upper limit for this process is the number of Comparators loaded with roads. Whenever the 

bit is set, it is an indication of a hit for that particular track. The final output in the form of a 

32-bit word (refer Table 3.6) is stored in the output FIFO of the Hit Filter module. At the 

end of hits for one centroid, the module waits for a next HITREG_VALID signal.  

 

Table 3.6 The data format of the hits in the output FIFO. 

 

At the end of event signal, a trailer (refer Table 3.7) is written into the FIFO. The module 

issues an independent end of event signal for the hit interface module. 

 

Table 3.7 The data format of the trailer for the hits. 

 

 

31..26 25..24 23..16 15..13 12..0 
Track number Pulse area SEQ ID HDI ID Centroid 

31..27 26 25 24..23 21..19 18..1
1 

10..8 7..0 

11110 SERR MM  -  SMT 
ID 

SEQ 
ID 

HDI ID Event 
no. 
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Hit Readout module 

This module includes the FIFO in which hits are written in a unique 32 – bit word 

format (refer Table 3.6). When the hit interface module issues a READ HITS signal, the 

read request signal of the FIFO is activated and the hits are given out on each clock cycle. 

 

The design of the data path was amended in different ways to optimize the speed, 

memory required and the logic cells utilized. The various approaches used for different 

modules are discussed in the following chapter.  

Shree ganeshayan namaha 
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CHAPTER 4 

SIMULATION RESULTS OF THE VHDL MODEL AND COMPARISON WITH A 

MATLAB MODEL 

 

 

The VHDL simulation model is described with the help of a test vector derived from 

Monte Carlo simulations of the response of the DØ detector to events of interest. These 

results are then compared to a MATLAB model of the same design. Each step in the flow of 

data through the main data path is given with a detailed description of the inputs and outputs 

of each module.  

 

The VHDL Model 

The test vector is given as data entering the SMT Data Filter from the VME bus. The 

test vector is given in Table 4.1. 

 

Table 4.1 Test vector for an example simulation of the data path  

in hexadecimal. 

      Direction of the data stream 

AA 77 81 00 40 03 41 0D 42 06 50 06 51 10 

52 07 6B 03 6C 04 6D 05 6E 04 6F 03 77 07 

78 06 79 07 7C 09 7D 10 7E 09 C0 C0 C0 C0 

 

The data values are in HEX. This is a data stream of 8-bits each.  

• The first byte is the SEQ ID – “AA” 
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• The second is the HDI ID – “77” 

• The third is the SVX-II chip id – “81”. The SVX-II chip id should be 

followed by a byte of zeros – “00”. 

 

The data stream after the byte of zeros is a strip number and the corresponding data 

value alternatively. The flow of the data through each module is described with reference to 

the detailed description of each module in Chapter 3. 

 

SMT Data Filter 

 This module converts the 8-bit test data stream into 16-bit word and adds two error 

bits to it thus an 18-bit data stream comes out the filter. The data stream coming out is as 

shown in Table 4.2. 

 The last word in this data output is the end of event marker “C0” (in HEX) and the 

event number “91” (in HEX) obtained from the FRC (refer Chapter 3 - Section “SMT Data 

Filter”). 

Strip Reader Control  

This module starts on the EVENT_START signal. It pulls out the 18-bit word out of the 

intermediate FIFO. It converts the stream into higher byte and lower byte. The module 

first checks for the channel specific SEQ ID in higher byte and HDI ID in the lower byte. 

It waits for a valid SVX-II chip id in higher byte and the byte of zeros in the lower byte in 

the second word of the data stream. The most significant bit (MSB) of the higher byte; in 

this case bit 8 of the higher byte should be high. The SVX-II chip id decides the data type 

of the following strips. 
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Table 4.2 Output stream from the SMT Data Filter. 

Error bits (2) 
(Binary) 

Higher Byte (8) 
(HEX) 

Lower byte (8) 
(HEX) 

00 AA 77 
00 81 00 
00 40 03 
00 41 0D 
00 42 06 
00 50 06 
00 51 10 
00 52 07 
00 6B 03 
00 6C 04 
00 6D 05 
00 6E 04 
00 6F 03 
00 77 07 
00 78 06 
00 79 07 
00 7C 09 
00 7D 10 
00 7E 09 
00 C0 91 

 

 

The pair of strip number in higher byte and data value in lower byte follows.  The corrected 

data is obtained by addressing the gain-offset memory with SVX-II chip id (“0001” – 

binary) and the data value. The bad channel information from the bad channel memory is 

matched with the strip number for each strip of the SVX-II chip. The resultant 23-bit word 

formed is as shown in Table 4.3.  
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Table 4.3 Output stream from the Strip Reader Control module. 

Data type 
(Binary) 
 (2-bits) 

New 
data bit 
(1-bit) 

End of 
event bit 
(1-bit) 

Data 
(HEX) 
(8-bits) 

Chip Id 
(HEX) 
(4-bits) 

Channel 
ID (HEX) 
(7-bits) 

10 1 0 03 1 40 
10 0 0 0D 1 41 
10 0 0 06 1 42 
10 0 0 06 1 50 
10 0 0 10 1 51 
10 0 0 07 1 52 
10 0 0 03 1 6B 
10 0 0 04 1 6C 
10 0 0 05 1 6D 
10 0 0 04 1 6E 
10 0 0 03 1 6F 
10 0 0 07 1 77 
10 0 0 06 1 78 
10 0 0 09 1 79 
10 0 0 07 1 7C 
10 0 0 10 1 7D 
10 0 1 09 1 7E 

 

This chip is found to be of the axial data type, hence the data type is assigned as 

“10.” 

Cluster Finder 

The Cluster Finder module gets each data value with its specific parameters packed 

as a 23-bit word. The module finds clusters according to the clustering algorithm as 

described in the flow chart attached in Appendix A.4.  

  The chart in Figure 4.1 shows the data values in the test data stream with the 

corresponding strip addresses, thus we can see from the chart clearly there will be five 

clusters in this data stream as is shown in the simulation results in Table 4.4. 
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Figure 4.1 The data values in the test data stream with the corresponding strip addresses 

 

Table 4.4: The clusters found by the Cluster Finder module 

Address 
of D2  
(11 bits) 
 

D1  
(8 bits) 

D2 
 (8 bits) 

D3 
 (8 bits) 

D4  
(8 bits) 

D5  
(8 bits) 

0C0 00 03  0D  06  00  
0D0 00 06  10  07  00  
0EC 03 04  05  04  03  
0F8 07 06  07  00 00  
0FC 00 09  10  09  00  

 

Centroid Calculator  

The Centroid Calculator module finds the centroid according to the formula 

presented in the Chapter 3-Section “Centroid Calculator”. The cluster type bit decides the 

cluster type. In this example the bit is set to “1”, hence we calculate a five-strip cluster. The 

centroids for each of the above clusters as found by the module are given in Table 4.5.  

Table 4.5: The centroids found by the Centroid Calculator module. 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 
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Data type 
(Binary) 

Pulse area 
(Binary) 

Centroid 
(11 bits HEX. 

2 bits precision Binary) 
10 11 0C1.00 
10 11 0D1.00 
10 11 0ED.01 
10 11 0F8.10 
10 11 0FD.01 

Hit Filter 

The Hit Filter, after getting the EVENT_START signal, waits for the road data. It 

gets the road data from FRC. The example of the road data values is given in the Table 4.6. 

These are the values used to compare the centroid values obtained from the Centroid 

Calculator.  

 

Table 4.6: The road data values extracted from the road-data, with respect to the 17 – bit 

road-data value from FRC. 

Lower road data 
(HEX) 

Upper road data 
(HEX) 

020 200 
0B0 100 
010 150 
050 300 

 

These road pairs are sequentially loaded into the Comparators. Each Comparator is 

assumed to have the same track number as the FRC track, as the roads come in sequentially. 

The Hit Filter now waits for the centroids to be processed. The processed centroids are read 

out one at a time. The z-axis type centroids are stored in a z-centroid FIFO, while the axial-

type of centroid is loaded into the Comparators to find the hits. The hit format module reads 

out the Hit Register when they receive a HITREG_VALID signal. The hits for each centroid 

are written out in the output FIFO in a 32-bit format. The hits in this example are given in 

Table 4.7 below.  
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Table 4.7 The hits obtained written in the output FIFO. 

Track 
[31..26] 
(Binary) 

Pulse 
Area 

[25..24] 
(Binary) 

Seq Id 
[23..16] 
(HEX) 

HDI ID 
[15..13] 
(Binary) 

Centroid 
[12..2] 
(HEX) 

Precision 
[1..0] 

(Binary) 

000000 11 AA 111 0C1 00 
000001 11 AA 111 0C1 00 
000010 11 AA 111 0C1 00 
000011 11 AA 111 0C1 00 
000000 11 AA 111 0D1 00 
000001 11 AA 111 0D1 00 
000010 11 AA 111 0D1 00 
000011 11 AA 111 0D1 00 
000000 11 AA 111 0ED 01 
000001 11 AA 111 0ED 01 
000010 11 AA 111 0ED 01 
000011 11 AA 111 0ED 01 
000000 11 AA 111 0F8 10 
000001 11 AA 111 0F8 10 
000010 11 AA 111 0F8 10 
000011 11 AA 111 0F8 10 
000000 11 AA 111 0FD 01 
000001 11 AA 111 0FD 01 
000010 11 AA 111 0FD 01 
000011 11 AA 111 0FD 01 

 

The whole data processing terminates at the Hit Filter. After the hits have been 

written in the hit output FIFO the channel waits for the hits to be read out by the hit interface 

module. Once the hits are read out the channel waits for next EVENT_START signal to start 

the data processing of new data stream on the VME bus. 

 

The MATLAB model 

 
The MATLAB model is functionally similar to the VHDL model, but it does not run 

synchronously. The model takes data from a file and stores the processed data in another 

file. This model was developed to generate test vectors for the different modules in the 
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VHDL model. The downloaded parameters are given in the form of input when the program 

is run. The data generated by this module is in binary i.e. 0’s and 1’s. The data streams 

generated by this model were compared to the data streams obtained from the VHDL model. 

The MATLAB code written to realize this model is in the attached Appendix D. The 

MATLAB consists of SMT filter, Strip Reader, Cluster Finder, Centroid Calculator and the 

Hit Filter. The flow of data through each of these modules is explained in detail below. 

 

Main design  

This is the main design file used to run all module files sequentially. The modules 

access the downloaded parameters file and the other data files and the data streams are 

written into the respective data files, reference D.1 

 

Read downloaded parameters  

 
 This file is used to extract the downloaded parameters from the data file downloaded 

parameters.m and store them in the file down_data.m from where it accessed by the data 

processing modules, reference D.2 

SMT filter module  

This module reads the HEX data stream from the file “vtm_data.m”. The module 

converts the 8-bit data stream to 16-bit data word. The error bits are also provided along 

with the VTM data stream. The 18-bit data word formed (refer Table 4.2) is written in 

binary format in file “smt_file.m”, reference D.3 
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Strip Reader 

The Strip Reader module reads the data sequentially from either the smt_data.m file 

or the test_data.m file, depending on the test input, which is a user input. The SEQ ID, HDI 

ID, data type, gain and offset are accessed from the data file down_data.m. The data is 

processed to get the 23-bit word (refer Table 4.3) in binary format. This data is written into 

the file “strip_data.m”, reference D.4  

 

Cluster Finder  

The Cluster Finder module takes the 23-bit word from file “strip_data.m” and finds 

the clusters according to the clustering algorithm in APPENDIX A. The threshold_1 and 

threshold_2 values are accessed from data file down_data.m. The data values of the five 

clusters with address of the data value in buffer 2 (i.e. peak address – 1) are stored in the file 

“cluster_data.m”, reference D.5  

 

Centroid Calculator 

The cluster type and the pulse area threshold values are accessed from data file 

down_data.m. The calculation of the centroid is carried out in decimal and then the result is 

converted into binary format. The result as in Table 4.6 is stored in the file 

“centroids_data.m” in binary format, reference D.6.  

 

Hit Filter 

The Hit Filter reads the road pairs from the file “roads_data.m” and the centroids 

tagged with their data type and the pulse area from the file “centroids_data.m”. Each 

centroid is compared sequentially with each road pair and the output is written out in the file 
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“hits.m”, reference D.7 . The output consists of the track number, pulse area and the 

centroid. 

 

The VHDL module and the MATLAB module agree on the centroids and the hits. 

Thus the design is functionally correct. The MATLAB module thus helps to check 

functionality of each module individually as we can check the test streams at the end of each 

module. Thus the algorithmic approach helps to check the state approach taken in the VHDL 

model. 
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Shree ganeshayan namaha 

 

 

CHAPTER 5 

DESIGN ISSUES FOR IMPLEMENTATION OF THE MAIN DATA PATH 

 
 

The design for the main data path was developed using VHDL. Different design 

approaches were studied with the aim of developing a compact, functionally correct and fast 

design. The design approaches studied for the Hit Filter is presented, and the different 

design implementations approaches taken to fit the whole design (i.e. main data path with 

the L3 buffers) are also discussed in this chapter. 

 

The Hit Filter design approaches 

 
 The Hit Filter was required to have the capability to compare 46 road data values with a 

centroid value at a time. Different combinations of parallel and serial implementations were 

studied. The results are consolidated in Table 5.1. 

 As can be observed from Table 5.1 the number of logic cells required 

increases linearly with the number of comparators put in parallel. If we have a serial and 

parallel combination of the comparators there is a time delay in the switching of the bus 

possession. Also this approach does not reduce the logic cells utilization. Thus, the final 

scheme of all 46 comparators in parallel was chosen for high-speed comparison. The outputs 

of the comparators are read out serially so that they can be put out in the required 32-word 

format.  
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Table 5.1: The result of comparison for putting filters in parallel 

 No of filters 
in parallel 

No of 
inputs 

No of 
outputs 

No. Of 
LCs 

required 
1. 2 37 2 101 
2. 4 39 4 199 
3. 6 41 6 297 
4. 8 43 8 395 
5. 10 45 10 493 
6. 12 47 12 591 
7. 14 49 14 689 
8. 16 51 16 787 
9. 18 53 18 885 
10. 20 55 20 983 
11. 22 55 22 1081 
12. 24 59 24 1179 
13. 26 61 26 1277 
14. 28 63 28 1375 
15. 30 65 30 1473 
16. 32 67 32 1571 
17. 34 69 34 1669 
18. 36 71 36 1767 
19. 38 73 38 1865 
20. 40 75 40 1963 
21. 42 77 42 2061 
22. 44 79 44 2159 
23. 46 81 46 2257 

 

The different implementation schemes of the overall design 

 
The hardware implementation of the overall design, i.e., the main data path with the 

L3 buffers was tried in FLEX 10KE FPLDs. There also exists an external memory of 16 K 

for the road data. 

 During this implementation four design approaches were studied. These approaches 

are discussed in detail in this section.  
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Approach 1  

The synthesis tool was allowed to fit the design in the minimum possible number of 

FPLDs. The tool required a minimum of five FPLDs as shown in Table 5.2. 

 

Table 5.2: Results of the compilation: Approach 1 

Chip name Chip Inputs Outputs Memory 
Bits 

Logic 
cells 

EABs 

Strip_reader_ 
hitfilter_l3 
_schematic 

EPF10K200 
EGC599-1 

241 187 24772 
(25%) 

2003 
(20%) 

22 
(91%) 

Strip_reader_ 
hitfilter_l3 
_schematic-1 

EPF10K200 
EGC599-1 

122 316 58752 
(59%) 

4211 
(42%) 

22 
(91%) 

Strip_reader_ 
hitfilter_l3 
_schematic-2 

EPF10K30 
ETC144-1 

42 37 4608 
(18%) 

368 
(21%) 

2 
(33%) 

Strip_reader_ 
hitfilter_l3 
_schematic-3 

EPF10K30 
EQC208-1 

59 63 8192 
(33%) 

334 
(19%) 

2 
(33%) 

Strip_reader 
_hitfilter_l3 
_schematic-5 

EPF10K50 
EQC208-1 

86 29 4324 
(10%) 

2225 
(77%) 

10 
(100%) 

Total    100648 9141 58 
 

The tool tried to fit in the memory blocks first and then the logic into the FPLDs thus chose 

the FPLDs according to the memory capacity first and then fitted the logic cells into these 

FPLDs. In this approach the sizes of the FPLDs is varying, which is not preferable for the 

design. 

 

Approach 2 

 To study the behaviour of the synthesis tool, the Hit Filter forced to fit in one FPLD 

named Hitfilter_schematic, and the L3 buffers is  forced to fit in one FPLD named 

L3_schematic. The tool was allowed to fit the Strip Reader chip (i.e. the Strip Reader and 
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the Cluster Finder modules) in as few FPLDs as possible. The results are as shown the Table 

5.3. 

 

Table 5.3: Results of the compilation: Approach 2 

Chip name Chip Inputs Outputs Memory 
Bits 

Logic 
cells 

EABs 

Hitfilter 
_schematic 

EPF10K100 
EBC356-1 

87 170 10532 
(21%) 

4340 
(86%) 

12 
(100%) 

L3 
_schematic 

EPF10K200 
EGC599-1 

175 291 79424 
(80%) 

2941 
(29%) 

24 
(100%) 

Strip_reader 
_hitfilter_l3 

_schematic_1 

EPF10K200 
SFC484-1 

169 123 10692 
(10%) 

1860 
(18%) 

19 
(79%) 

Total    100648 9141 55 
 

 

After fitting the assigned modules to their FPLDs the synthesis tool fitted the memories in 

the L3_schematic FPLD and the excess logic into the Hitfilter_schematic FPLD, thus fitting 

the whole design in three FPLDs. This approach is not acceptable as the logic for the Strip 

Reader is spread into three FPLDs and thus there will be additional propagation delay on 

critical signals. 

Approach 3   

 In this approach, the synthesis tool was given some guidance by forcing the Hit Filter to 

fit in one FPLD the Hitfilter_schematic, the L3 buffers in one FPLD the L3_schematic. The 

Strip Reader with some memory modules is forced to fit in one FPLD  the 

Strip_reader_chip-1 and the Cluster Finder with remaining memory modules is forced to fit 

in one FPLD the Strip_reader_chip-2. The results are given below in Table 5.4. 
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Table 5.4: Results of the compilation: Approach 3 

Chip name Chip Inputs Outputs Memory 
Bits 

Logic 
cells 

EABs 

Hitfilter 
_schematic 

EPF10K100 
EBC356-1 

77 144 10532 
(21%) 

4012 
(80%) 

12 
(100%) 

L3 
_schematic 

EPF10K130 
EFC484-1 

183 175 40960 
(62%) 

1576 
(23%) 

13 
(81%) 

Strip_reader 
_chip-1 

EPF10K200 
EGC599-1 

179 216 45120 
(45%) 

3244 
(32%) 

18 
(75%) 

Strip_reader 
_chip-2 

EPF10K130 
EFC484-1 

124 183 4036 
(6%) 

309 
(4%) 

14 
(87%) 

Total    100648 9141 57 
 

  The Strip Reader requires two FPLDs as each memory space when assigned to an 

Embedded Array Block (EAB) utilizes minimum of more than one EAB. The EABs can 

store 8-bit wide word, for word lengths greater than 8-bits the EABs are concatenated. Thus 

even the small memory spaces were using more than one EAB even though the actual space 

utilized was 2-3 words with word lengths going up to maximum 32-bit wide. Thus the whole 

design fitted successfully in four FPLDs. Thus, the Approach 4 was taken to reduce the 

number of FPLDs.  

Approach 4  

  From the conclusion of Approach 3 the EAB assignment of the small memory modules 

was removed and they were implemented using logic cells. The results for the design with 

the changes are given in Table 5.5. 

The design is now found to fit successfully in three FPLDs which are very close to 

each other in size, thus for the final layout the largest FPLD of the FLEX10KE family can 

be chosen to permit further changes in the design. Since the logic cells replaced some of the 

EABs, a comparison of the change in the number of memory bits used and the logic cells 

utilized to substitute the EABs is given in Figure 5.1, Figure 5.2 and Figure 5.3, where 1 
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denotes approaches 1, 2, 3 and 2 denotes approach 4. 

 

Table 5.5: Results of the compilation: Approach 4 

Chip name Chip Inputs Outputs Memory 
Bits 

Logic 
cells 

EABs 

Hitfilter 
_Schematic 

EPF10K100 
EBC356-1 

77 144 10532 
(21%) 

4012 
(80%) 

12 
(100%) 

L3 
_Schematic 

EPF10K130 
EFC484-1 

183 175 40960 
(62%) 

1576 
(23%) 

13 
(81%) 

Strip_reader_ 
chip_schematic 

EPF10K200 
SBC356-1 

76 174 45120 
(45%) 

4773 
(47%) 

17 
(70%) 

Total    96612 10361 42 
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Figure 5.1 Comparison of the memory bits utilized 
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Figure 5.2 Comparison of the logic cells utilized 
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Figure 5.3 Comparison of the EABs utilized 

 

Implementation of the design using Quartus software 

 
 The design presented in this thesis is for one STC channel of the Level_2 of the D0 

detector. There will be eight such identical channels running in parallel (refer Chapter 2 – 

Section “Level_2”). All the channels are proposed to fit on to one Printed Circuit Board 

(PCB).  

 The design is successfully fitted in three FPLDs, but this amounts to 24 FPLDs for 

the eight STC channels and additional FPLD for the Main Control module (refer Chapter 2- 

Section “Main Control module”). Therefore 25 FPLDs should be fitted on to one PCB. This 

is not a difficult task, but the size of the PCB required will be really large and this is not 

suitable for the design. Thus a new approach has been examined to fit the whole design in a 

single APEX20KE FPLDs.  

The APEX20KE is one of the latest FPLDs offered by ALTERA. The synthesis tool 

used for implementing the design in the APEX20KE is QUARTUS. The strip reader module 

with bad channel memory, gain offset memory, test data memory and the monitor space was 

successfully implemented in an APEX20KE. The results of this implementation are shown 
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in Table 5.6. 

 

Table 5.6 Implementation of the Strip Reader module in APEX 20KE. 

Device name EP20K300EBC652-1 
Logic elements 2643/11520 (22%) 
Pins 395/408 (96%) 
Memory bits 49024 /147456 (33%) 
ESBs 28/72 (38%) 

 

 

The APEX20KE family has chips of high memory capacity and large number of logic 

elements. The specifications of the largest FPLD available in this family are given in Table 

5.7. 

Table 5.7 Specifications of EP20K1500E 

(Largest FPLD in APEX20KE family) [20]. 

Voltages 2.5 V and 1.8 V 
Maximum system gates 2,392,000 

Typical gates 1,500,000 
Logic Elements 51,840 

ESBs 216 
Maximum RAM bits 442,368 

Maximum macro-cells 3,456 
Maximum user I/O pins 808 
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CHAPTER 6 

SUMMARY 

 
 
 This thesis describes the implementation of the main data path that constitutes one 

channel of the Silicon Track Card (STC) card in the Level_2 of the D0 detector at Fermi 

National Acceleration Laboratory. There are eight such channels per card and the D0 

detector has 54 such cards mounted around the accelerator within the detector. 

 Very High Speed Integrated Circuit (VHSIC) Hardware Description Language 

(VHDL) is used to describe the behavioral model of the main data path constituting the Strip 

Reader, the Centroid Finder and the Hit Filter. The design is implemented on three 

FLEX10KE FPLDs. First, the functional correctness of the design was verified, and then 

timing studies were conducted. When implemented in the low-memory FLEX10K FPLD, 

the design requires three FPLDs per channel of STC. However, the timing requirements 

were not met. The limiting paths in the timing studies were found to the paths writing data 

into the memory spaces. These are going to be accessed once every event and the time 

available for this is a few minutes. The data processing signals are not present in these 

limiting paths. 

To improve the timings and to also to avoid the connections between the FPLDs for 

one channel, implementation of the design of a single channel in one FPLD is studied. In the 

course of these studies, the Strip Reader module was alone implemented in the APEX20K 

family by ALTERA Corporation. This family of FPLDs has a high density of logic gates 

and a large memory capacity. The results obtained from the implementation were used to 

predict the resources required for one channel of STC. The results show that three channels 

of STC can be implemented in one EP20K1500E, which the largest device available in the 
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APEX20K family.  The new design implementation will be able to meet the design 

requirements, as the propagation delays on the signals will decrease. Thus the new design 

implementation will help to improve the performance of the design logic and also help to 

reduce the Printed Circuit board (PCB) complexity.  

In addition to the APEX20K FPLD family, the Virtex family by XILINX is also a 

good option for use as the larger FPLD (refer Table 1.1).  
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APPENDIX – A 
 

FLOW CHARTS OF THE MODULES OF THE STC MAIN DATA 
PATH 

 
 
 
 

A.1  SIGNALS FROM THE MAIN CONTROL MODULE 

Start

Down load the
memory data

Enable the
channel

Issue event start
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A.2 SMT DATA FILTER 

 

Start
Channel enable

Ye
s

The first 8bit read in as
upper byte

and next 8 bits as lower
byte

The error bits are
tagged to the 16 bits to

form 18 bit stream

Write the last word
errors bits,C0 and

event number
Write word in

FIFO and go to S0

Give the end of
event signal to the

strip reader
control block

S0

S1

Is the byte
C0 NoYes S3S2

S4

A

A

A
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A.3 STRIP READER CONTROL 

 
 

Start
Event_start

This is the first word

Check for Seq_id and Hdi_id, increment
mis-match counter if not matching

Write raw data to raw data L3 buffer

Check for the chip id and a byte of zeros, if
byte of zeros not present - increment the
zero -error counter.
 Write raw data to the raw data l3 buffer

Check the chip id for
the data type

Init

First_word

Seq_hdi

Chip_zero

A

B

C

A

A

E
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A.3 STRIP READER CONTROL  (CONTINUED….) 
 

 
 

 

Write

Write the data in
output FIFO

Read_FIFO

Read the input
FIFO

A

Previous State -
First read

Write the channel id and
the corresponding data.
Check for 'C0'

Get the corrected data
from the gain_offset
LUT.
Format data in 23 bit
register.

'C0' encountered

Set end of
event

chan_value

Wait
Increment chip
counters.

Fill_output_data

B

Previous State -
Seq_hdi

C

Previous State -
Chip_zero/

fill_output_data

D

D

A

E
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A.4 CLUSTER FINDER 
 
 

B

Note: To write cluster data
into L3 buffer, takes 6

cycles. The machine is in
wait state for these cycles.
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Return state - Init
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data3 <----- ndata
same for add.Return state -
main

Main

If ndata > data 3

data4 <--- ndata,
same for add

Return state - next

NoYes

In
it

A

A

M
ai

n

B

C

N
ex

t

D

D

D

E

O
ut

pe
ak

D

No

A
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A.4 CLUSTER FINDER (continued) 
 
 

 
 
 

 

data 1<---  data3
data 2 <---- data 4
data3 <----- ndata, same for add.
Go to read. Return state - main

Next

If ndata > data 3

data5 <--- ndata
Shadow registers-
data_shadow1 <-- data4
data_shadow2 <--- ndata, same for add
Return state - outpeak

data_shadow1<---  data_shadow2
data_shadow2 <---- ndata
, same for add.

Outpeak

If ndata > data 3

data1 <--- data_shadow1
data2 <--- data_shadow2
data3 <--- ndata,
data4 and  data5 <--zero
 same for add
Return state - main

NoYes

YesNo

C

E

D

D

D
D
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A.5 HIT FILTER – Hit filter control logic 

Start
Event start

Wait for the road_write
signal, or the last_road

signal indicating no roads

Ro
ad

_w
rit

e

Wait for road_write to
go low Read the centroid.

Hits_busy = 1
Road_event count.

Next

Decide

First_load

Write the road datainto
comparator. Increment
count

This is axial centroid.

What is the data
type

This is z- axis centroid

Init

Last_road

Is
Fifo_empty

NoYes

Data type = 10 Data type = 11

Write the centroid in a
the required format into
the z- axis FIFO.

Read the
comparators output

Centroid_write
Comp_read

A

A

Road_write

B

Is Road write
and last road

NoYes

A B

C

C

AD

E

Last_road
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 A.5 HIT FILTER – Hit filter control logic  (continued) 
 

 
 
 
 

Hitreg_read

Wait

Is done = 1

Read the masked
output

Wait for the hit
counting formatting
and processing.

NoYes

Wait in this state

Data_wait

Is fifo_empty NoYes

D

YesYes

 fifo_empty
and

 end of event

E

 fifo_empty
and not

 end of event

F

F

 fifo not empty

A

A

G

G
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A.6 HIT FILTER - Hit filter hit_format logic 

 
 

1.Latch the hitreg.
2. Latch the grouped
signals

Point_select

Init
Wait for
hitreg_valid
signal.

H
itr

eg
_v

al
id

Select the starting
point to read the hit
register

Ready

Are
hits_present NoYes

Read the hits from
the starting point

Set the done bit

select the bit from
the register the
pointed out by the
counter

Read_hits

Is bit high NoYes

Read_bit

Next_hitWrite_hit

D

A

B C
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A.6 HIT FILTER - Hit filter hit_format logic (continued) 

 

 
 

 

Write_hit
Format the data into
32 bit word

Write the word to L3
buffer and output
FIFO

Output_hit

Next_hit

Is counter <
= total count NoYes

NOTE: Total count
here is the number of
roads / comparators
loaded. This the
upper limit for the hit
search

Increment the
counter.

Centroid done.
Reset Counter

Is it end of
event

NoYes

Write the trailer to
L3 buffer and the
output FIFO.

Trailer

Go to Init and wait
for the  hit register
for the next
centroid.

B

C

D

A A
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